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Abstract

The state of the art for optimal data-gathering in wireless sensor networks is to use additive increase

algorithms to achieve max-min fair rate allocation ([1], [3]) while implicity trying to maximize network

utilization. In this work we explicitly formulate the problem of maximizing the network utilization subject

to a max-min fair rate allocation constraint in the form of two separate but dependent linear programs.

We adopt a dual based approach to design an efficient distributed algorithm to achieve our objectives.

The analysis of the dual proves the sub-optimality of previously proposed additive increase algorithms for

this problem. We show through numerical evaluations that the proposed dual-based distributed algorithm

can obtain solutions within 0.02% of the optimal in 99.65% of the cases (and within 20% in even the

worst case) within just one iterative update of shadow prices through sub-gradient search, requiring a

polynomial number of message exchanges (which appears to grow as O(n2) where n is the number of

sources in the network).

I. INTRODUCTION

The problem we wish to address is as follows: there are n sources in the network that are trying to

send data to a single sink. Every source has a shortest path through one or more intermediate nodes

to the sink. Every receiver in the network is bandwidth constrained. The objective of the problem is to

maximize the utilization of the network capacity while maintaining a max-min fair rate allocation to all

nodes. We define a rate allocation to be max-min fair if the minimum rate allocated to any flow is the

maximum possible over all possible rate allocations.

There have been solutions proposed to the max-min fair rate allocation problem in the context of

wireless sensor networks. In an earlier work [1], we presented a solution in the context of designing a
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scheduled access scheme that guarantees max-min fairness. Rangwala et al. [3] present a solution in the

context of a congestion control problem. The common element between these two works is that they

use additive increase algorithms to perform bandwidth allocation which guarantees max-min fair rate.

However as we show in Section III such an approach will not guarantee the maximization of network

utilization. Our approach of analyzing the dual to achieve a distributed solution to the problem follows

the approach presented by Ye and Ordonez [4] where a distributed dual based gradient search algorithm

is proposed for the problem of maximizing data extraction under energy constraints. In this work we

formulate the maximization of network utilization while maintaining a max-min fair rate allocation as two

separate but dependent LP’s. We emphasize the shortcomings of additive increase algorithms by presenting

their association with our primal. We then analyze the dual to obtain a distributed near optimal algorithm

to achieve our objective.

II. MODELING RECEIVER BANDWIDTH CONSUMPTION IN WIRELESS NETWORKS

In this section we present a model that captures the bandwidth consumption at a receiver in a tree T

rooted at the sink. The essence of the model is that it captures the interference observed by a receiver

during reception of flows from its children. This model is identical to the one proposed by us in [1]

and is similar to the one used by Rangwala et al. [3] to capture the effects of interference. We denote

the set of all communication links in the network by the set E, and the set of all nodes by the set V.

Every receiver in the network has a finite receiver bandwidth capacity given by the set B. The routing

tree rooted at the sink is denoted by T ⊂ G.

Due to the broadcast nature of wireless links, any flow from a child i to its parent j on the tree T

consumes bandwidth on all receivers that are neighbors of i on the graph G (we assume here that the

neighbor set captures all interfering nodes, and therefore refer to the edges in E that are not part of T as

noise edges). It is this feature that makes the problem of rate allocation in these networks very different

from that observed on a wired network.

The bandwidth constraint at a receiver i is modeled as:∑
j∈Ci

r(j)
src +

∑
j∈N i

∑
k∈Cj

r(i)
src +

∑
j∈N i

r(j)
src ≤ B(i) (1)

where r
(j)
src represents the total rate transmitted by a node j, Ci is the set of all node j that have i in

its path to the sink. N i is the set of all neighbors of i. We would like to make it explicit that we are

modeling a half duplex radio. Hence a receiver cannot send and receive. This implies there is a noise

link from receiver i to itself, i.e. all diagonal elements of N are 1.
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III. FORMULATING THE CONSTRAINED OPTIMIZATION PROBLEM

We now formulate the maximization of the network capacity utilization while maintaining max-min

fairness as two separate constrained optimization problems P1 and P2. The definition of variables used

in our formulation are as follows: B is an n × 1 vector representing the bandwidth available at each

node i ∈ V. Rsrc is an n× 1 vector representing the rate allocated to each source i ∈ V. N is an n×n

matrix, that denotes the presence of a noise edge nij ∈ n between two nodes i, j ∈ V (i can be equal

to j). Y is a scalar variable representing the minimum rate among all flows that acts as the objective

function of P2. C is an n×n matrix that gives the parent-child relationships on the data gathering tree,

such that cij ∈ Ci is 0 if node j is not in node i path to the sink and cij is equal to 1 if j is in the path

of node i to the sink.Rin represents the total input rate incident on a receiver from all its child nodes.

Rnoise represents the total rate that is incident on each receiver from its neighbors. Note that the noise

bandwidth r
(i)
noise ∈ Rnoise represents the total outgoing bandwidth of node i ∈ V .

P1 : P2 :

max
∑

i∈T r
(i)
src s.t. max Y s.t.

Rin + N×Rnoise � B Rin + N×Rnoise � B

Rin = C×Rsrc Rin = C×Rsrc

Rnoise = C×Rsrc + Rsrc Rnoise = C×Rsrc + Rsrc

r
(i)
src ≥ Y ∗ ∀ i ∈ T r

(i)
src ≥ Y ∀ i ∈ T

Rsrc � B Rsrc � B

Y ∗ in P1 is the optimal solution of P2. The constraints of our optimization problem come directly from

our bandwidth consumption model presented in section II.

Also we would like to note that the optimal solution Y ∗ of the primal P2 is the min(B(i)
available) ∀ i ∈ V

where B
(i)
available = B(i)

|C(i)|+
P

j∈N(i) |C(j)| . We omit the proof to this claim due to space constraints.We will

from now on refer to node i as the bottle neck node.

Solutions that achieve max-min fairness while implicitly trying to maximize network utilization( [1], [3])

use the following additive increase mechanism. Sources in the network are allowed to increase their rates

equally by a small value ε. When a receiver in the network is constrained, it constrains all its neighbors,

its neighbors children and its own children. This process continues till the point when all nodes in the

network are constrained. Since all nodes have equal increments and the first node to exhaust its bandwidth

would be the bottle neck node, algorithms using additive increase technique would achieve the optimal

solution to P2. However we claim that although the additive increase algorithm consumes the network
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Fig. 1. An example depicting the sub-optimality of the additive increase technique to achieve the maximization of maximizing

network utilization while maintaining a max-min fair rate allocation.

capacity it will not necessarily achieve a solution for P1. In this section we present insights into our

claim through an example and present a more rigorous proof in Section IV. Assume all nodes, except

node 1 are sources in figure 1. In this topology if source rates of all nodes were incremented equally

node 3 would end up consuming bandwidth at 2 and 4 and hence the throughput achieved would be

sub-optimal. A higher throughput could be achieved by simply allocating all nodes the max-min rate

and than giving the remaining capacity to nodes 2 and 4. The example shows that there exist topologies

where additive increase mechanisms might be sub-optimal.

Apart from the sub-optimality another draw back of additive increase algorithms is the estimation of

the increment ε. In real systems an accurate estimate of ε is critical to avoid oscillations [3]. Moreover

the convergence of these algorithms is O(B
ε ) where B is the maximum receiver bandwidth, which implies

a trade off between the speed of convergence and the accuracy of the solution depending on the choice

of ε.

IV. A DUAL BASED APPROACH

The reason the primal based algorithms use an additive increment based approach is that the primal

itself does not lend any information as to the size of the increments that would be required to achieve

optimality. Nor does it give any information about the amount of decrements required by nodes when a

constraint becomes active. We believe explicit knowledge of these two values would lead to an algorithm

with a faster convergence time and robustness to network dynamics (addition and deletion of nodes).

In our approach, we will use the dual to come up with a distributed algorithm using the shadow price

interpretation of the Lagrange multipliers [2].
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A. The Lagrange Dual

We consider the maximum bandwidth constraint as our domain and relax the constraints in the primal

to obtain the Lagrange dual function. We will concern ourselves only with the dual of P1 and assume

that the optimal max-min rate will be calculated from the primal P2. The Lagrange dual function of the

primal P1 is:

D(λ, υ) = maxRsrc�B

−Y ∗(
∑
i∈T

υi) +
∑
i∈T

r(i)
src(1 + υi − (

∑
j∈C(i)

λj +
∑

j ∈N (i)

∑
k∈C(j)

λk +
∑

i∈N (j)

λj)) +
∑
i ∈T

λiB
(i)


Since the original problem is a linear program the dual will also be an LP given by

D : minλ� 0,υ� 0D(λ, υ)

Also since the solutions are feasible for both problems the duality gap would be zero [2]. Hence our

objective would be to minimize the dual instead of maximizing the primal.

Let ζi(R∗
src) =

∑
j∈Ci r

(j)∗
src +

∑
j∈N (i)

∑
k∈C(j) r

(k)∗
src +

∑
j∈N (i) r

(j)∗
src . From the Lagrange dual function

it can be seen that the sub-gradient w.r.t λi and υi is:

∂D

∂λi
= −(ζi(R∗

src)−B(i)) (2)

∂D

∂υi
= r(i)∗

src − Y ∗ (3)

Since the dual is a linear program, the objective of minimizing the Lagrange dual can be achieved by

tracing the graph in the direction of the negative gradient. We will use the above fact to develop our

distributed algorithm.

B. The Distributed Algorithm

The Lagrange dual function can be rewritten as:

D : minλ�0,υ�0

(
max

(∑
∀ i

r(i)
srcµi

)
+
∑
∀ i

λiB
i − Y ∗

∑
∀ i

υi

)
Where µi is given by:

µi = 1 + υi − (
∑

i∈C(j)

λj +
∑

j∈N (i)

∑
k∈C(j)

λk +
∑

i∈N (j)

λj) (4)

To solve the dual D we could use sub gradient techniques. Sub gradient techniques are iterative,

where at each step t we increment the shadow prices λi and υi in the direction of the negative gradient

as follows:

λi(t + 1) = [λi(t) + αt(ζi(R∗
src)−Bi)]+ (5)
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υi(t + 1) = [υi(t)− αt(r(i)∗
src − Y ∗)]+ (6)

Where R∗
src are the optimal source rates that solves:

max(
∑
∀ i

r(i)
srcµi) (7)

In order to find a feasible solution to our dual D we will have to allocate all r
(i)
src at least the max-min

rate Y ∗. For a fixed λ and υ, given that all sources are allocated at least the max-min rate in order

to find a solution to equation 7 we would require to allocate the maximum available bandwidth to the

source having the highest µi. We would than allocate the remaining bandwidth to the next highest µi

till will exhaust the network capacity. The coefficients µi thus provide an ordering for bandwidth update

amongst all sources. The ordering of bandwidth increments at each step can be achieved by simply giving

a weight equal to wi = 1
P

λ
(t)
j

where j belongs to the set of receivers that node i interferes with and λ
(t)
j

is the value of λj at step t. Note that this maximization needs to be performed at every step t. This order

also clearly shows the failure of additive increase algorithms which update bandwidths of all sources

equally without taking into consideration the ordering that is implicit from their interference sets.

To achieve the optimal D we should be running the sub gradient algorithm for multiple iterations till

the shadow prices converge. Fortunately through simulations we can show that in our specific problem

99.65% of the time we achieve the optimal in the very first iteration. The details of the simulation and

its performance with respect to the optimal are presented in Section V. Our algorithm for maximizing

network utilization with max-min fair rate allocation consists of optimizing equation 7.

We now present an algorithm for the maximization of equation 7. The algorithm Maximization of

network utilization proceeds as follows; In step 1, each node calculates its per node available bandwidth.

The bottle neck bandwidth is than the minimum of all the available bandwidths. This bottle neck

bandwidth is allocated to every source in the network. In step 2, we calculate the pending bandwidth at

each node in the network. For any receiver if the pending bandwidth is negative or zero it constraints all

its neighbors their children and its own children. A constrained node can no longer increment its source

rate. In step 3, for every node in the network we look at the pending bandwidth at every node that is

on the path from the source to the sink, and nodes that are neighbors to these intermediate nodes, and

set the pending available bandwidth to the minimum of these. In case the pending available bandwidth

is positive, we compare its weight with every other source that is not constrained and increment its

bandwidth only if it has the maximum weight. In step 4, we check the constrained flag for all nodes in
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the network and if all nodes have been constrained the program terminates, else we repeat the algorithm

from step 2.

Algorithm Maximization of network utilization

1. Initialization

2. contrainedi = FALSE ∀ i

3. [Step 1] max-min Rate:

4. Bi
available = Bi

|Ci|+
P

j∈Ni |Cj | ∀ i

5. r
(i)
src = min(B(i)

available) ∀ i

6. [Step 2] Pending Bandwidth:

7. for ∀ i 3 |C(i)| 6= 0

8. do B
(i)
pending = ζi(Bsrc)−Bi

9. if B
(i)
pending ≤ 0 then constrain all neighbors, their children and your own children

10. [Step 3] Updating Source bandwidth:

11. for ∀i

12. do pend bw = min(B(j)
pending),i ∈ Cj |i ∈ N j |j ∈ Nk, i ∈ Ck

13. if (pend bw < 0)

14. then r
(i)
src = Y ∗

15. constrainedi = TRUE

16. else

17. if (wi = max(W )∀ j, 3 constrainedj = FALSE & constrainedi = FALSE)

18. r
(i)
src = r

(i)
src+ pend bw

19. [Step 4] Checking termination condition:

20. if (contrainedi = TRUE) ∀ i then end

21. else goto Step 2

V. PERFORMANCE EVALUATION

In order to evaluate the performance of our algorithm we choose network sizes ranging from 6 to

70. For each network size we choose 9 instances of trees obtained by running a shortest path algorithm

on a random deployment. For each instance of a tree we give every receiver in the tree a bandwidth

uniformly chosen between 100 and 250. We choose 10 such bandwidth distributions for each tree. For our

evaluation we initialize λi = 1,∀ i and µi = 1,∀ i. Figure 2(a) shows the CDF of the error between the

optimal solution from a centralize solver and the solution obtained from our distributed algorithm. The
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(a) CDF of the error observed between the optimal through-

put achievable and the throughput achieved using our dis-

tributed algorithm.

(b) Performance of the algorithm in terms of the number

of packets exchanged before achieving 10% of the optimal.

CDF clearly shows that for 99.65% of the instances we are able to achieve close to 0.02% of the optimal

throughput. For the instances where we were not able to achieve the optimal, we were close to 10% of

the optimal throughput in 18 instances and close to 20% in two of the instances. In Figure 2(b) we plot

the number of packets required to achieve 10% of the optimal. Based on a regression fit we estimate

that it grows as O(n2). In the full version of the paper we plan to justify this asymptotic performance

analytically.
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