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Abstract

One of the principal characteristics of large scale wireless sensor networks is their distributed, multi-hop nature.

Due to this characteristic, applications such as query propagation rely regularly on network-wide flooding for

information dissemination. If the transmission radius is not set optimally, the flooded packet may be holding the

transmission medium for longer periods than are necessary, reducing overall network throughput. We analyze the

impact of the transmission radius on the average settling time - the time at which all nodes in the network finish

transmitting the flooded packet. Our analytical model takes into account the behavior of the underlying contention-

based MAC protocol, as well as edge effects and the size of the network. We show that for large wireless networks

there exists an intermediate transmission radius which minimizes the settling time - corresponding to an optimal

tradeoff between reception and contention times. We also explain how physical propagation models affect some

scenarios and why there is no intermediate optimal transmission radius observed in these cases. The mathematical

analysis is supported and validated through extensive simulations.
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I. I NTRODUCTION

Wireless sensor networks present new challenges due to their unique characteristics, one of them being their

distributed, multi-hop, dynamic nature. Due to this characteristic, applications regularly rely on flooding as a robust

way to reach all the nodes in the network. Examples of these applications are query propagation in directed diffusion

[2] and time distribution in the S-MAC protocol [15].

Despite some well-known drawbacks, flooding is still widely used as a robust technique for information dissem-

ination. However, since flooding depends on the multi-hop distribution of data, factors such as the choice of the

transmission radius further influence the efficiency of this task. Adjusting the transmission radius has been studied

with intent of finding the optimal radius for different parameters such as network connectivity, but to the best of

our knowledge, it has not previously been researched in the context of optimizing flooding events.

It is known that flooding sometimes consumes energy and bandwidth resources unnecessarily. Furthermore, if the

transmission radius of the nodes is not carefully chosen, the flooded packet may take too long to be transmitted

by all the nodes in the network, impacting overall network throughput:the more time the channel is captured by

a flooding event, the less queries can be disseminated, and the less time the channel is available for other packet

transmissions. We can state the relation between settling time and throughput in sensor networks as follows:

throughput �
�

settlingtime
(1)

This paper addresses the problem of finding an optimal transmission radius for flooding in sensor networks. The

intuitive idea is that there is a general tradeoff in choosing the size of the transmission radius. On one hand, a large

transmission radius implies that fewer retransmissions will be needed to reach the outlying nodes in the network;

therefore, the message will be heard by all nodes in less time. On the other hand, a larger transmission radius

involves a higher number of neighbors competing to access the medium, and therefore each node has a longer
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contention delay for packet transmissions. The purpose of our work is the analysis of this tradeoff in CSMA/CA

wireless MAC protocols.

Although at first glance this problem appears intuitively simple, our initial results prompted some surprising

deviations from our first analytical model [19] that caused us to further analyze the problem in depth. The

optimization of the flooding event is heavily dependent on the radio propagation model that is being used, and in

light of this we have discovered physical layer characteristics that augment our first analytical model.

The remainder of the paper is organized as follows. Section II positions our work in the literature, discussing other

related work. Section III describes an intuitive analytical model that we developed to obtain the optimal transmission

radius in sensor networks. Section IV shows the preliminary results obtained through simulations that verify our

analytical information. Section V, describes scenarios that deviated from the first analytical model, and physical

layer characteristics that explain these deviations. Section VI outlines our conclusions and intents for future work.

II. RELATED WORK

Even though flooding has some unique advantages – it maximizes the probability that all reachable nodes inside a

network will receive the packet – it has several disadvantages as well. Several works have proposed mechanisms

to improve flooding efficiency. The broadcast storm paper by Niet al. [3] suggests a way to improve flooding by

trading robustness. In that work, the authors propose to limit the number of nodes that transmit the flooded packet.

The main idea is to have some nodes refrain from forwarding their packet if its transmission will not contribute to

a larger coverage. Nevertheless, the basic flooding technique is in wide use for a number of querying techniques

for sensor networks (in large part because of its guarantee of maximal robustness), and we focus on analyzing its

MAC-layer effects and improving its performance by minimizing the settling time of flooding.

Other studies have looked at the impact of the transmission radius in wireless networks. In [5] and [8] the authors

analyzed the critical transmission range to maintain connectivity in wireless networks. [5] presents a statistical
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analysis of the probability of connectivity and [8] provides a separate algorithm to accomplish this connectivity.

On the same line of work, [6] and [7] analyze the minimum number of neighbors that a node should have to keep

the network connected.

In [10], the authors describe a similar tradeoff for increasing the transmission radius: a shorter range implies less

collisions and a longer range implies moving a packet further ahead in one hop. However, in that work the authors

want to maximize a parameter calledthe expected one-hop progress in the desired direction, which essentially

measures how fast a packet can reach its destination in point-to-point transmissions. The same tradeoff is studied

in [20], however the goal in this work is to maximize the number of data packets delivered in the network.

Another important direction in the study of optimal transmission radius is targeted to improve network lifetime and

energy consumption. In [21], Wattenhoferet al. propose a simple distributed algorithm, where each node can vary

its transmission radius to increase network lifetime while maintaining connectivity. [22] investigates the effects of

transmission radius in the energy efficiency of packet transmission. This study also shows how some parameters

of the physical layer model influence the performance of protocols at the network layer.

It is important to remark that all these previous studies were not analyzing a protocol like flooding, but instead

trying to obtain an optimal transmission radius for other metrics such as connectivity, throughput or energy. In [4]

an experimental testbed of 150 Berkeley motes [9] run flooding as the routing protocol. The study showed empirical

relations between the reception and settling times – parameters used in our work – for different transmission ranges.

Our work also finds an optimal transmission radius. However, in our case the important metric is the amount of

time that a flooded packet captures the transmission medium. To accomplish the goal of minimizing the settling

time, we study the tradeoff between reception and contention times. To our knowledge, there are few other papers

in the literature that undertake a detailed analysis of the interaction between the MAC-layer and network-level

behavior of an information dissemination scheme in wireless networks.
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Fig. 1. Uniform Topology, the terrain is divided into a number of cells, within each cell a node is placed randomly

III. A NALYTICAL MODEL

Our work is based on the following assumptions:

� The MAC protocol is based on a CSMA/CA scheme.

� All the nodes have the same transmission radiusR.

� The area of the network can be approximated as a square.

� No mobility is considered.

� The nodes are deployed in either a grid or uniform topology. In a uniform topology, the physical terrain is

divided into a number of cells based on the number of nodes in the network, and each node is placed randomly

within each cell. Figure 1 shows an example of a uniform topology with 25 nodes in a square area.

The analytical model is described by the following terms:

� Reception Time (TR ): Average time when all the nodes in the network have received the flooded packet.

� Contention Time (TC ): Average time between reception and transmission of a packet by all the nodes in the

network.

� Settling Time (TS ): Average time when all the nodes in the network have transmitted the flooded packet and

signals the end of the flooding event.

From these definitions we observe that:
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TS � TR � TC (2)

The goal is to minimize the settling timeTS . Since the settling time is the sum of the reception and contention

times, the remainder of this section will analyze the relationships betweenTR andTC with respect to the range of

the transmission radius.

A. Reception Time

The reception timeTR represents the average time at which nodes received the packet. If the transmission radius

of each node is increased, the reception time in the network will decrease; because there are fewer hops needed to

reach outlying nodes. The two extreme cases are:

(a) When the nodes have a minimum radius yet the network is still connected.

(b) When the nodes have a radius that covers the entire network.

The first case describes the upper bound of the number of hops required between the source node and the last node

to receive the packet. In the second case, all the nodes will be one hop away from the source node, and all of them

will receive the packet at approximately the same time, except for negligible differences due to the propagation

delay.

Based on the discussion above, the reception timeTR is directly proportional to the maximum distance between

any two nodes, and inversely proportional to the transmission radius. Due to the kind of topologies considered in

our research (grid or uniform), the maximum distance between the nodes is the diagonal of the network area. Let

us define:

R: transmission radius (m).

S: length of the side of the square area (m).
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Analytical Reception Time
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Fig. 2. Analytical curve for reception time. The X axis represents the range of the transmission radius as a percentage ofS (length of the

side of the square are). The Y axis represents a normalized time, where 1 is the maximum

Hence, we have the following first-order relationship:

TR � H
S

R
(3)

WhereH is a constant.

Figure 2 shows the analytical result for the reception time. It is important to observe that the lower bound of the

reception time for any network is equivalent to the transmission delay.

B. Contention Time

Now, let us consider the relationship between the transmission radius and the contention time. If a node increases

its transmission radius, it will increase its number of neighbors, which will cause an increase in the contention

time.

In order to visualize this effect, we will again consider the two extreme cases analyzed for the reception time .
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If the transmission radius is the minimum that guarantees the connectivity of the network, each node will have

the minimum number of neighbors possible and thus represents a lower bound of the contention time . On the

other hand, when the transmission radius covers the whole network, all the nodes in the network will compete for

accessing the medium, thus increasing their contention time.

We observe that the contention timeTC is a function of the number of neighbors. If we consider the area covered

by the network asS� then the expected number of neighbors of a given node is described by:

m � �
R�

S�
n (4)

Wheren is the total number of nodes in the network.

However, the contention time is not directly proportional to equation 4. There are two phenomena that influenceTC ;

we name them theedge phenomenon and theback-off phenomenon. Both of these are described in the following

paragraphs.

1) Edge Phenomenon: The edge phenomenon can be described as follows: nodes close to the edges of the network

area will not increase their number of neighbors proportionally to the square of the radius. The reason is that only

a fraction of the area covered by its transmission radius intersects the area of the network. This phenomenon is

illustrated in figure 3, which shows a square topology with a given node placed in the intersection of two lines. In

this figure, we can observe three regions as the transmission radius is increased:

� Region 1: WhenR ranges from 0 to the edge of the network(Re).

� Region 2: WhenR ranges fromRe until it covers the entire network (Rw).

� Region 3: WhenR is greater thanRw.
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Fig. 3. Different regions to calculate the number of neighbors as we increase the transmission radius of the node. The first region is for

values ofR between 0 andRe. The second region goes fromRe to Rw; in this region we can observe that some parts of the coverage area

does not contribute with more nodes. In the third region - whenR is greater thanRw - all the nodes in the network are neighbors.

Each of these regions will have a different expression for the number of neighbors. For the first region, the number

of nodes inside the transmission radius is directly proportional to the square of the radius. In the second region,

the number of neighbors increases proportionally to the overlapping area between the transmission range and the

network area (please refer to Appendix A). In the third region, the number of neighbors remains constant and is

equal to the total number of nodes in the network. Since the values ofR for the three different regions depend on

the position of the node in the network, we are going to analyze the bounds of the edge phenomenon.

The node closest to the center of the network is the one increasing its number of neighbors most aggressively,

hence represents the upper bound. For this node, the second region begins whenR is greater thanS
�

and the third

region begins whenR is greater thanS
�

p
�. The following equation shows the upper bound for the number of

neighbors of this node:

m� upperbound �

���������
��������

�R�

S� n � � � R � S
�

R��� � �� � �cos���sin���� � S
�
� R � S

�

p
�

n � S
�

p
� � R

(5)
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Edge Phenomenon
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Fig. 4. Edge phenomenon: the lower and upper bounds are plotted, as well as the curve for the topologies we use.

where

� � arccos�
S

�R
�� (6)

The lower bound is given by nodes located on the corners of the network. In this case, there is no region 1 as such

but rather the number of nodes increases as�R�

�
and finishes whenR equalsS. The second region finishes when

R equalsS
p
�. The next equation represents the lower bound for the number of neighbors:

m� lowerbound�

���������
��������

� R�

�S�n � � � R � S

R���
�
� �� cos���sin���� � S � R � S

p
�

n � S
p
� � R

(7)

where

� � arccos�
S

R
�� (8)

Figure 4 shows the curve for the upper and lower bounds of the edge phenomenon. The actual curve of the edge

phenomenon, for the kinds of networks we are studying, was obtained through numerical computation, and is also

plotted in this figure. As expected, the curve is within the theoretical bounds.
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It is important to observe that in some large scale scenarios the transmission radius will not enter regions 2 and

3, due to the large radiusR required. However, since we do not havea priori knowledge of in what region the

optimal radius can be found, we need to take into account all the possible cases in the mathematical model.

2) Back-off Phenomenon: In CSMA/CA protocols, a node checks if the medium is clear before sending a packet;

when the medium is clear for a small period of time, the node transmits the packet. If the channel becomes busy

during this waiting period, it chooses a random time in the future to transmit the packet. This mechanism leads

to a non-linear relationship between the contention time and the number of neighbors. We denote this non-linear

relationship as the back-off phenomenon.

Although there are variations in CSMA/CA protocols, usually the back-off timer is calculated by choosing a slot

in a contention window and multiplying this number by the slot time. If we denotedt as the trasnmission delay,

ni as the number of nodes that choose sloti, andbi as the number of busy slots before sloti, then the contention

time is given by:

TC �

Pcw
i�� dt�� � bi�ni

n
(9)

This equation shows that as the number of nodes increases there is a higher probability that all the slots will be

busy; if this the case, if the number of nodes is increased the contention time will reached a maximum value. In

practice, this scenario is unlikely because it requires all nodes to be closely synchronized to choose the slot times

at almost the same times. A more accurate way to calculate the back-off phenomenon is through simulating a

one-hop network with a varying number of nodes. Figure 5 shows the non-linear relationship between the number

of neighbors and the contention time. This curve can be numerically approximated by:

f�m� � Jlog��m� (10)
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Back Off Phenomenon
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Fig. 5. Exponential back-off phenomenon: As we can observe, the relation between the contention time and the number of neighbors is

not linear

wherem is the number of neighbors andJ is a constant.

If we incorporate the edge and back-off phenomena explained above, we obtain that the upper bound for the

contention timeTC is given by:

TC � upperbound �

���������
��������

Kf��R�

S� n� � � � R � S
�

Lf�R��� � �� � �cos���sin����� � S
�
� R � S

�

p
�

Mf�n� � S
�

p
� � R

(11)

and the lower bound is:

TC � lowerbound�

���������
��������

Kf�� R�

�S�n� � � � R � S

Lf�R���
�
� �� cos���sin����� � S � R � S

p
�

Mf�n� � S
p
� � R

(12)

WhereK, L, andM are constants andf��� is the function described in equation 10.
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Analytical Contention Time
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Fig. 6. Analytical curve for the contention time, the upper and lower bounds are plotted as well as the expected curve for a topology of

400 nodes. These curves include the edge and back-off phenomena

Figure 6 shows the respective bounds for the contention time along with the curve obtained through numerical

calculations for a network with 400 nodes.

C. Settling Time

Equation 2 stated that the settling time is the sum of the reception and contention times. Figure 7 shows the analytical

settling time, again for a network with four hundred nodes. For illustration purposes, the analytical reception and

contention times are also plotted. The settling time curve shows a minimum, as expected.

It is important to observe that according to our model, we can obtain improvements up to 60% in the settling time,

and the optimal transmission radius is approximately 15% of the length ofS. �

�It is important to observe that as the density decreases the analytical reception time will move towards the right side and will have a

smoother fall, implying that the optimal transmission radius will be a higher percentage ofS
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Analytical Settling Time
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Fig. 7. Analytical curve for the settling time, which is the sum of the reception and contention times

IV. SIMULATION SET UP AND RESULTS

In order to verify our mathematical analysis, we ran a series of simulations and tests. This section describes the

set up of the simulations and the results obtained.

A. Simulation Set Up

We simulated different sizes of networks in terms of area and number of nodes. The simulation was done using

the Global Mobile Simulation (GloMoSim) developed at UCLA [16]. The MAC layer used for all simulations was

CSMA/CA with a bandwidth of 2 Mbps.

First, for each experiment we created a uniform topology placingn nodes in aS � S square area. All the nodes

in the network have the same transmission radiusR. Then we determined the minimum radius that connects the

network. Starting with that radius, we increased the transmission radius of the nodes until it covered the entire

network. The source node, which initiates the flood, is placed at the bottom left corner of the area, hence the

maximum transmission radius is set toR � S
p
�. The source sends a packet of fixed size (512 bytes). Usually

queries or raw data packets in sensor networks will be smaller than that. We believe that the packet size chosen is
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Simulated Settling Time
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Fig. 8. Reception, contention and settling times obtained through simulations for 400 nodes in a 1000�1000m � area. Notice that the

settling time presents an optimal radius

a reasonable upper bound. Algorithm 1 shows the stages at which we recordedTR, TC andTS .

Algorithm 1: Flooding

if message is received for the first time then

Save receiving time; // used to calculateTR

Rebroadcast Packet;

Save delivery time; // used to calculateTC andTS

B. Results

Figure 8 shows the reception, contention and settling times for 400 nodes in a 1000�1000m� area. We observe

that the recordedTR, TC andTS resemble their respective analytical counterparts. The settling time shows that

an optimal transmission radius can be obtained. In this case, the optimal transmission radius is approximately 200

meters. Table I shows the optimal radius obtained for different topologies. One obvious observation is that as we

increase the area of the network – keeping the number of the nodes constant – the optimal transmission radius also

increases.
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number of nodes 1000 m 2000 m 3000 m 4000 m 5000 m 6000 m 7000 m 8000 m 9000 m 10000 m

225 198.5 335.8 532.2 597.2 843.5 946.7 1191.5 1336.9 1683.0 1888.4

400 198.5 299.3 422.8 597.2 670.0 751.8 843.5 1191.5 1336.9 1500.0

625 157.7 237.7 266.7 376.8 474.3 532.2 670.0 751.8 843.5 946.4

900 157.7 237.7 335.8 376.8 532.2 597.2 597.2 751.8 843.5 1061.9

TABLE I

OPTIMAL RADIUS OBTAINED FOR DIFFERENT TOPOLOGIES IN METERS

number of nodes 1000 m 2000 m 3000 m 4000 m 5000 m 6000 m 7000 m 8000 m 9000 m 10000 m

225 34% 37% 34% 31% 28% 27% 25% 24% 22% 21%

400 32% 36% 33% 29% 27% 24% 23% 20% 20% 18%

625 31% 42% 42% 40% 38% 36% 35% 34% 35% 34%

900 33% 48% 49% 46% 45% 43% 41% 41% 38% 39%

TABLE II

PERCENTAGE OF THE MAXIMUM IMPROVEMENT THAT CAN BE OBTAINED IN THE SETTLING TIME

A metric called themaximum percentage of improvement (MPI) is used to quantify the improvement in the settling

time obtained by the optimal transmission radius. This metric is defined as:

MPI �
max�TS��min�TS�

max�TS�
(13)

Table II shows that depending on the topology, the maximum percentage of improvement can range up to 50%.

The same table also shows that – except for the first two topologies (1000 m and 2000 m) – as we increase the

density of nodes, the maximum percentage of improvement also increases. To describe the rationale behind this

behavior, we will use figure 9, which shows the reception, contention and settling times for networks with 400,

625, and 900 nodes in a 6000� 6000m� area. The first two topologies do not show this trend, due to anomalies

that we will explain in the next section.
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Fig. 9. This figure shows the reception, contention and settling times for networks with 400, 625, and 900 nodes in a 6000� 6000m �

area. The settling time shows how as the density is increased the maximum percentage of improvement is also increased. This is denoted

by the vertical arrows

Figure 9.a illustrates that the reception times follow the same trend�, and hence are not the cause of the increment

in the maximum percentage of improvement. In contrast, figure 9.b depicts clear differences in the contention times.

This is due to the fact that – for the same radius – as the density increases, the number of neighbors also increases;

and hence the contention time will increase. However, it is important to notice that the differences amongst curves

increase as the transmission radius increases. This phenomenon will cause a greater percentage increment in the

maximum settling time than in the minimum settling time; which is the reason for the trend observed in Table

II. Figure 9.c shows the settling times for the three topologies and it can be clearly observed that the difference

between the maximum and minimum settling times increases with the density, as denoted by the vertical arrows.

V. A NOMALIES

The previous section showed that in medium and large areas, an optimal transmission radius is obtained. However,

further simulations revealed us that for small areas the optimal transmission radius was not present. As an example,

Figure 10 shows the results obtained for 900 nodes in a 200� 200m� area. In this case, the settling time does not

show an intermediate optimal radius. This section explains the causes of the anomalies and shows that at the root

of these is the interference-transmission radius dichotomy which is particularly evident in small areas, depending

on the antenna height.

�The difference in the maximum is because networks with higher densities have a higher number of hops
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Fig. 10. This figure shows the reception, contention and settling times for a network with 900 nodes in a 200�200m � area
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Fig. 11. Anomalies: The contention time of fig 10 is plotted together with its analytical counterpart. The vertical arrow shows that the

maximum contention time is obtained for a smaller transmission radius. The horizontal arrow denotes the non-monotonocity of the contention

time

Figure 11 shows the contention time of figure 10, together with the analytical contention time obtained using the

model developed in section III. By simple inspection, we observe that the simulated contention time in this case

has two major differences with our analytical model. First, the maximum contention time is obtained for a smaller

transmission radius than expected (horizontal arrow). Second, after reaching a maximum, the contention time starts

to decrease asymptotically to a constant value (vertical arrow). This second effect is counter-intuitive because even

if the interference radius causes a maximum contention time earlier, this should at least remain constant, given that
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the number of neighbors are either constant or increasing. These two effects together cause the contention time

to behave differently than the earlier analytical model, resulting in no intermediate optimal radius for the settling

time.

We named the two anomalies mentioned above as: theearly contention phenomenon and thenon-monotonicity

phenomenon. We will initially give a description of the interference-transmission dichotomy, show exactly how it

represents itself in the simulator, and then explain the anomalies in light of this fact.

A. Interference-Transmission Radius Dichotomy

Wireless nodes do not have only a transmission radius but also an interference radius that is greater than the

transmission radius. The reception time is mostly dependent on the transmission radius. However, the contention

time is dependent on the interference radius. The relationship between interference and transmission radius depends

on two factors�:

� the propagation model

� the difference between the reception threshold and reception sensitivity of the transceiver.

Two popular radio propagation models used in wireless network simulators are the free-space model and the two-ray

model. The two-ray model is a more accurate description of reality, however, it is not accurate for short distances

and for these the free-space model is preferred. To overcome this problem, simulators use the free-space model

until a specified distance, and beyond this distance the two-ray model is used.

In our case, the reception threshold was ten times greater than the reception sensitivity and the antenna height was

1.5 m. These values mean two things. First, the interference radius is 3.16 times greater than the transmission radius

in the free-space model, and 1.78 times greater in the two-ray model. Second, the simulator uses the free-space

�These factors are elaborated in Appendix B
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Propagation Model in Simulators
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Fig. 12. Propagation Models: the free-space and two-ray model are plotted as dashed lines. The model used by the simulator is the solid

line, notice that thismixed model uses the free-space model until a transmission radius of 226 m and beyond that uses the two-ray model

(the antenna height was 1.5 m)

model for distances smaller than 226.2 meters and beyond this point uses the two-ray model. Figure 12 shows the

transmission radius of the free-space and the two-ray model as dotted lines and the model used by the simulators

as a solid line. A detailed derivation of the ratios and the intersection point is given in Appendix B.

B. Early Contention Phenomenon in light of the Interference-Transmission Radius Dichotomy

The early contention phenomenon is not only observed in the topology showed in figure 10. A closer look to the

simulation results obtained in section IV (figure 8) shows that the maximum contention time is appearing for a

transmission radius of 600 m. However, the derived analytical model in figure 6 showed that this maximum should

be obtained for a transmission radius of approximately 1000 m�.

As we have explained in the previous paragraphs, the contention time is not solely dependent on the transmission

radius but better described as dependent on the interference radius. Because the interference radius covers a larger

area than the transmission radius, it is not surprising to see a maximum contention at a smaller transmission radius.

�1000 m is obtained because the analytical model of figure 6 shows that the maximum contention time for a network with 400 nodes is

reached when the transmission radius is equal to 100%S, which is 1000 m in this case
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Fig. 13. These figures shows the analytical curves taking into account interference in the two-ray and free-space propagation models. It is

important to observe that the minimum settling time is greater than the first model (fig 7)

Figure 13 shows how the contention time (and settling time) is shifted by including the interference-transmission

radius ratio in the analytical model. Important observations for the new model are that the improvement obtained

by the optimal transmission radius is reduced and that the maximum contention time now is reached when the

interference radius covers the entire network. This new model better describes the simulations obtained.

C. Non-Monotonicity Phenomenon in light of the Interference-Transmission Radius Dichotomy

The non-monotonicity phenomena is particularly obvious for higher interference-transmission radius ratios. We

found that this phenomena occurs due to MAC layer synchronization effects that depend on whether interfering

nodes are within interference/transmission range of each other. It is best illustrated with an example. Figure 14

shows two scenarios. In the upper one the transmission radius is to the left of the maximum contention time, while

in the lower one is to the right. In the first scenario, nodes A and C are waiting to transmit their packets. At time

t� node B’s back-off timer expires and starts transmitting the packet, node A is within node B’s interference range

and hence freezes its timer, however node C is outside this range and continues to decrease its timer. At timet�

node C’s timer also expires and starts transmitting its packet, finishing its transmission at timet�. Node A will

have to wait the interval betweent� to t� due to the transmissions of these two nodes. In the second scenario,



22

C

A
B

B

C

t1 t2 t3 t4

C

A
B

B

C

t1 t3

Transmission Radius Topology Packet Transmission

Fig. 14. Non-Monotonicity phenomenon: after reaching a maximum, the contention time starts to decrease asymptotically to a constant

value. This figure shows the importance that synchronization has on this phenomenon. The star in the contention time curve shows the

transmission radius that is being analyzed

all the nodes received the flooded packet at almost the same time and upon reception choose an slot time of their

contention window. Let us assume that nodes B and C choose the same slotsi and node A choose slotsj , which

is greater thansi. In this scenario, nodes B and C will sense that the channel is idle at the same time and will

start transmitting their packets att� and finish their transmissions att�. In this case node A will have to wait only

during the intervalt� to t�.

The key difference between the two scenarios described above is synchronization. When the transmission radius

covers the entire network, the network will resemble a single slotted-Aloha access channel, where all the nodes

choosing the same slot will collide with high probability. Because of this, for every node that waits (stops its timer)

because it observes a collision, there is a good probability that several transmission are overlapping with each other,

and therefore that node has to wait for a smaller contention time. On the other hand, when the interference radius

starts to cover the whole network the nodes will be highly de-synchronized and hence every time a node stops it

will be interrupted for a longer amount of time because the nodes’ transmissions do not overlap too much with

each other.

It is important to remark that after reaching the maximum contention time, the transmission radius starts to cover
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more area of the network while the interference range looses its area of coverage. This implies that more nodes

are synchronized, and that, is the reason why we have the decay in the contention time.

Thus, paradoxically, we find thatincreasing the transmission radius (beyond the point where the interference

radius covers the network) does not increase the amount of contention but rather decreases the contention time

for nodes waiting to transmit, because the contending transmissions become more synchronized and more likely to

use perfectly overlapping times.

To summarize this discussion, we find that the early-contention and non-monotonicity phenomena are anomalies

that can cause the absence of an optimal intermediate transmission radius that minimizes the settling time. However,

these anomalies (which have to do with the dichotomy between the transmission and interference radius) are most

noticeable in small areas (� ���m) when antenna heights are significant (� ��	m).

VI. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of finding an optimal transmission radius for minimizing the settling time for

flooding in sensor networks. This problem merits discussion because flooding is still used in various wireless

protocols, and this paper proposes a new way to adjust the transmission radius to make this task more efficient.

There is significant amount of work in the literature that has studied the optimal transmission radius for maintaining

network connectivity and making efficient use of energy in the network. However, finding an optimal transmission

radius to minimize the settling time in flooding events has not been addressed in depth before.

This work proves that choosing a transmission radius without previous analysis can lead to an unnecessarily large

settling time in the network which will decrease the overall network throughput. We proposed an analytical model

verified by simulations that describes an optimal transmission radius for uniform and grid topologies.

We also found that some scenarios do not demonstrate an intermediate optimum transmission radius. We analyzed
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these effects in terms of the early contention and non-monotonicity phenomena, which were shown to be due to

the interference-transmission radius dichotomy.

Thus, the important contributions of this work are the:

� Development of a mathematical model investigating the tradeoff between contention and reception times for

flooding in large scale wireless sensor networks.

� Analysis of optimal transmission radius that minimizes the settling time.

� Demonstration through simulations that improvements up to 50% can be achieved in the settling time, partic-

ularly for dense deployments in large areas.

� Investigation of anomalies relating to the interference-transmission dichotomy and and their influence on the

settling time behavior of flooding.

To our knowledge there are few results in the literature that analyze the behavior of network layer protocols

for large-scale wireless systems while taking into account the underlying MAC-layer behavior. In this paper we

have focused on analyzing the impact of medium access on what is perhaps the simplest wireless information

dissemination protocol - basic broadcast flooding. We hope to continue this line of work by investigating the joint

behavior of other protocols for wireless networks with respect to the underlying MAC layer.
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VII. A PPENDIX A : OVERLAPPING OFTRANSMISSION RADIUS AND NETWORK AREAS

We are interested in obtaining the overlapping area (Ao) as shown in figure 15. DefiningAr as the residual area

beyondS��, because of symmetry, the total overlapping area is given by:

Ao � 
�
�R�



� Ar� (14)

where

A� � Ar � At (15)

It is observed that

� � arccos�
S

�R
� (16)

Hence

A� � �
R�

�
(17)

and

At � R�sin���cos��� (18)

as a consequence

Ar � �
R�

�
�R�sin���cos��� (19)

Finally we obtain

Ao� center � 
��R
�

�
� �R

�

�
� R�sin���cos����

Ao� center � R��� � �� � �sin���cos����

(20)

In the case of the lower bound, we have one fourth of a circle and� is given by:

� � arccos�
S

R
�� (21)
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Fig. 15. The figure shows the overlapping area between the transmission radius coverage and the area of the network

Hence:

Ao� corner � ���R
�

�
� �R�

�
� R�sin���cos����

Ao� corner � R���
�
� �� sin���cos����

(22)

VIII. A PPENDIX B : PROPAGATION MODELS AND INTERFERENCE VERSUSTRANSMISSION RADIUS

The relation between the transmission and interference radius is related to the propagation model of the transmission

medium. We are going to briefly describe two of the most common models, the free-space model and the two-ray

model.

The free-space propagation model assumes the ideal condition where there is only one line-of-sight path between

transmitter and receiver. [17] presents the following equation to calculate the signal power at a distanced from the

transmitter:

Pr�d� �
PtGtGr	

�

�����d�L
(23)

WherePt is the transmitter signal power,Gt andGr are the antenna gains of the transmitter and receiver respectively,
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L (L � 1) is the system loss and	 is the wavelength.

The two-ray model [18] considers a direct path and a ground reflection path, and is more accurate for long distances

than the free-space model. In this model the received power at distanced is given by:

Pr�d� �
PtGtGrh

�

th
�

r

d�L
(24)

Now, let us obtain the relation between the transmission and interference range. A transceiver has two important

parameters:

Power Reception Threshold (Ph): minimum power for received packet.

Power Reception Sensitivity (Ps): sensitivity of the radio.

WherePh 
 Ps. If a node receives a signal abovePh it process the packet, this determines the transmission radius.

If a node receives a signal abovePs but belowPh, it senses the channel as busy but is unable to process the

packet, this determines the interference range.

Given that a transmitter sends a signal with powerPt, let us define the transmission radiusRt as the distance a

signal travels until the power decays toPh and the interference radiusRs as the distance a signal travels until

decays toPs.

Some basic mathematical manipulation will give:

Rt

Rs

�

s
Ps
Ph

(25)

for the free-space model, and:
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Rt

Rs

� �

s
Ps
Ph

(26)

For the two-ray model. Another important feature of the propagation models is that if the two-ray model is selected

then it has to be calculated the minimum distance until it is valid. As figure 12 shows there is an intersection point

below which the free-space model has to be used. The distance at which both intersect is given by:

di �
��hthr

	
(27)


